Laboratório de Química do Estado Sólido
 LQES NEWS  portfólio  em pauta | pontos de vista | vivência lqes | lqes cultural | lqes responde 
 o laboratório | projetos e pesquisa | bibliotecas lqes | publicações e teses | serviços técno-científicos | alunos e alumni 

LQES
lqes news
novidades de C&T&I e do LQES

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

LQES News anteriores

em foco

hot temas

 
NOVIDADES

Nanomachines could fight the war on diabetes.

Scientists from CSIRO's Synthetic Biology Future Science Platform have used advanced biological and chemical engineering to create a simpler, cleaner, and more cost-effective process for manufacturing the anti-diabetic drug D-fagomine.

Type 2 diabetes is one of the greatest global health challenges of the 21st century, with more than 350 million people living with the condition.

It occurs as a consequence of the hormone insulin not being produced in sufficient quantities to convert glucose from food into energy. When this process is disrupted, blood glucose can rise to levels where poor health outcomes can follow.



Credits: Nanomagazine


D-fagomine is a chemical compound that can do this job in insulin's place by lowering blood glucose levels.

Project lead Dr. Colin Scott and his team used a series of enzymes to convert the cheap and abundant chemical glycerol into D-fagomine.

"We've modified naturally occurring enzymes, so that they can be used as 'nanomachines' in assembly lines that assemble molecules," said Dr. Scott.

"Enzymes are nature's nanotechnology—biological molecules found in every living cell that are responsible for the chemical reactions we rely on to survive."

The successful process was achieved by assembling a series of enzymes, each one doing just one chemical conversion, and passing the product onto the next enzyme in series.

The enzymes were arranged in compartments, with each compartment containing enzymes for one chemical step. The compartments were then assembled in the correct sequence to convert glycerol, a readily available and cheap chemical, into D-fagomine

The new process is cleaner and quicker than current methods of producing D-fagomine, and Dr. Scott and his team expect that once trialled commercially it could reduce the cost of producing anti-diabetic drugs.

Now the design principles for these nanomachines is understood, new nanomachines and molecular assembly lines can be built—potentially opening the door for improvements in other technologies reliant on chemical reactions, such as the production of other drugs, biodegradable plastics and biofuels and fuel additives.

The team are now looking for industry partners to begin commercial trials of the production process.

NanoMagazine. Accessed: Oct 09, 2019.

Assuntos Conexos:
Diabetes : uma rede inteligente de nanopartículas para tratar a doença.

Real-time monitoring of insulin with a nanotechnology sensor.

Bio-sensing contact lens could someday measure blood glucose, other bodily functions.



<< voltar para novidades

 © 2001-2020 LQES - lqes@iqm.unicamp.br sobre o lqes | políticas | link o lqes | divulgação | fale conosco