Laboratório de Química do Estado Sólido
 LQES NEWS  portfólio  em pauta | pontos de vista | vivência lqes | lqes cultural | lqes responde 
 o laboratório | projetos e pesquisa | bibliotecas lqes | publicações e teses | serviços técno-científicos | alunos e alumni 

LQES
lqes news
novidades de C&T&I e do LQES

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

LQES News anteriores

em foco

hot temas

 
NOVIDADES

Silicone no corpo pode produzir eletricidade...

Andar para recarregar seu celular e respirar para alimentar seu marca-passo? Isto é o que propõem engenheiros americanos. Flexível e piezoelétrica, sua invenção converte a energia mecânica, portanto o movimento, em eletricidade.

Os pesquisadores da Universidade de Princeton (EUA) conseguiram criar uma lâmina aliando a flexibilidade do silicone e o poderoso efeito piezoelétrico do titano-zirconato de chumbo, ou mais simplesmente PZT.

O PZT é uma cerâmica que converte 80% da energia mecânica que ela recebe quando é deformada em energia elétrica, um rendimento excepcional para um material piezoelétrico. Como o corpo gasta pouca energia quando de seus movimentos, é importante que essa taxa de conversão seja elevada. "O PZT é 100 vezes mais eficiente que o quartzo, um outro material piezoelétrico", sublinha Michael McAlpine, engenheiro mecânico de Princeton.

O silicone tem igualmente a vantagem de ser flexível. O exército americano já havia testado materiais piezoelétricos incluídos nos calçados para gerar eletricidade, mas os soldados se queixavam de dores nos pés. Os cristais e polímeros utilizados eram muito rígidos.


Da flexibilidade...

A idéia é, portanto, tornar flexíveis os materiais piezoelétricos. Ora, se são cristais, logo rígidos, e sua temperatura de cristalização elevada, são incompatíveis com as matrizes de plástico ou látex.

Michael McAlpine e Yi Qi resolveram o problema. Após a produção em alta temperatura de cerâmicas PZT, extraíram nanofitas, quimicamente, por microgravura. As nanofitas, a seguir, foram incorporadas no silicone.





Chips piezo-silicone (piezo-rubber chips), como o batizaram os cientistas, desse nanogerador elétrico flexível.

Créditos: Frank Wojciechowski.



Outras vantagens de sua criação: ele é biocompatível e adaptável em dimensões, sendo produzido com a ajuda de técnicas de impressão microeletrônica.

Sua biocompatibilidade - ou seja, sua ausência de efeito nocivo para o organismo e ausência de reação de rejeição -, permitirá, por exemplo, implantar esse gerador próximo dos pulmões para alimentar um marca-passo. O simples movimento da caixa torácica quando da respiração poderá, então, ser suficiente para gerar a corrente elétrica necessária.

Segundo seus inventores, "a excelente performance da montagem de piezo-fitas aliada à flexibilidade e à biocompatibilidade do silicone poderá abrir caminho para a pesquisa fundamental e aplicada".




Efeito piezoelétrico desencadeado pela deformação da membrana de silicone flexível.

Créditos: American Chemical Society.



Com a multiplicação de têxteis inteligentes, células solares e baterias imprimíveis, este tipo de material poderá, de fato, prometer associações interessantes.

Futura Sciences (Tradução - MIA).


Nota do Scientific Editor: o artigo que deu origem a esta notícia, de título: "Piezoelectric Ribbons Printed onto Rubber for Flexible Energy Conversion", de autoria de Y. Qi, N.T. Jafferis, K. Lyons, Jr., C.M. Lee, H. Ahmad e M.C. McAlpine foi publicado na revista Nano Letters, volume 10, número 2, págs. 524-528, 2010, DOI: 10.1021/nl903377u.


<< voltar para novidades

 © 2001-2020 LQES - lqes@iqm.unicamp.br sobre o lqes | políticas | link o lqes | divulgação | fale conosco