Laboratório de Química do Estado Sólido
 LQES NEWS  portfólio  em pauta | pontos de vista | vivência lqes | lqes cultural | lqes responde 
 o laboratório | projetos e pesquisa | bibliotecas lqes | publicações e teses | serviços técno-científicos | alunos e alumni 

LQES
lqes news
novidades de C&T&I e do LQES

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

LQES News anteriores

em foco

hot temas

 
NOVIDADES

Scientists develop material that could regenerate dental enamel.



Enamel, located on the outer part of our teeth, is the hardest tissue in the body and enables our teeth to function for a large part of our lifetime despite biting forces, exposure to acidic foods and drinks and extreme temperatures. This remarkable performance results from its highly organised structure.

However, unlike other tissues of the body, enamel cannot regenerate once it is lost, which can lead to pain and tooth loss. These problems affect more than 50 per cent of the world’s population and so finding ways to recreate enamel has long been a major need in dentistry.



A close-up of the enamel-like material.

Credits: Queen Mary University


The study, published in Nature Communications, shows that this new approach can create materials with remarkable precision and order that look and behave like dental enamel.

The materials could be used for a wide variety of dental complications such as the prevention and treatment of tooth decay or tooth sensitivity - also known as dentin hypersensitivity.


Simple and versatile

Dr Sherif Elsharkawy, a dentist and first author of the study from Queen Mary’s School of Engineering and Materials Science, said: “This is exciting because the simplicity and versatility of the mineralisation platform opens up opportunities to treat and regenerate dental tissues. For example, we could develop acid resistant bandages that can infiltrate, mineralise, and shield exposed dentinal tubules of human teeth for the treatment of dentin hypersensitivity.”

The mechanism that has been developed is based on a specific protein material that is able to trigger and guide the growth of apatite nanocrystals at multiple scales - similarly to how these crystals grow when dental enamel develops in our body. This structural organisation is critical for the outstanding physical properties exhibited by natural dental enamel.

Lead author Professor Alvaro Mata, also from Queen Mary’s School of Engineering and Materials Science, said: “A major goal in materials science is to learn from nature to develop useful materials based on the precise control of molecular building-blocks. The key discovery has been the possibility to exploit disordered proteins to control and guide the process of mineralisation at multiple scales. Through this, we have developed a technique to easily grow synthetic materials that emulate such hierarchically organised architecture over large areas and with the capacity to tune their properties.”


Mimic other hard tissues

Enabling control of the mineralisation process opens the possibility to create materials with properties that mimic different hard tissues beyond enamel such as bone and dentin. As such, the work has the potential to be used in a variety of applications in regenerative medicine. In addition, the study also provides insights into the role of protein disorder in human physiology and pathology.

The research was funded by the European Research Council (ERC) Starting Grant (STROFUNSCAFF) and the Marie Curie Integration Grant (BIOMORPH).


More information:

• Research paper: ‘Protein disorder-order interplay to guide 1 the growth of hierarchical mineralized structures’. Sherif Elsharkawy, Maisoon Al-Jawad, Maria F. Pantano, Esther Tejeda-Montes, Khushbu Mehta, Hasan Jamal, Shweta Agarwal, Kseniya Shuturminska, Alistair Rice, Nadezda V. Tarakina, Rory M. Wilson, Andy J. Bushby, Matilde Alonso, Jose C. Rodriguez-Cabello, Ettore Barbieri, Armando del Rio Hernández, Molly M. Stevens, Nicola M. Pugno, Paul Anderson and Alvaro Mata. Nature Communications.

• Find out more about Biomedical Engineering with Biomaterials and Tissue Engineering at Queen Mary.

Queen Mary University. Posted: June 01, 2018.



<< voltar para novidades

 © 2001-2020 LQES - lqes@iqm.unicamp.br sobre o lqes | políticas | link o lqes | divulgação | fale conosco