Laboratório de Química do Estado Sólido
 LQES NEWS  portfólio  em pauta | pontos de vista | vivência lqes | lqes cultural | lqes responde 
 o laboratório | projetos e pesquisa | bibliotecas lqes | publicações e teses | serviços técno-científicos | alunos e alumni 

LQES
lqes news
novidades de C&T&I e do LQES

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

LQES News anteriores

em foco

hot temas

 
NOVIDADES

Quantum dot polymer for next-generation screens.

U.S. Naval Research Laboratory scientists have developed and patented the fabrication of transparent, luminescent material they say could give smartphone and television screens flexible, stretchable, and shatterproof properties.

The material is a thiol-yne nanocomposite polymer tailored to hold light-emitting quantum dots, tiny semiconductors whose size and composition can be precisely tuned to produce bright, clear, and energy-efficient colors.

According to a study published by the lab's Optical Sciences Division (ACS Omega"Fabrication of Photoluminescent Quantum Dot Thiol–yne Nanocomposites via Thermal Curing or Photopolymerization"), the thiol-yne polymer binds strongly to the quantum dots with a novel ligand and has a uniform distribution throughout the matrix. The material can be polymerized by ultraviolet light or thermal curing.



Frames a and b show the molded thiol–yne polymer block containing red quantum dots in ambient conditions (scale bar = 1 cm). Frame c shows the polymer block under ultraviolet light. Inset images shows the red quantum dots (1.5 µM) within the matrix (inset scale bar = 50 nanometers).

Credit: U.S. Naval Research Laboratory 


On Thursday, the U.S. Patent and Trademark Office published the Navy's patent application, listing inventors Darryl Boyd, Michael Stewart, Kimihiro Susum, Euknkeu Oh, and James Wissman.

"Our invention creates a material with tailorable optical properties, which are dependent on the monomers used in the prepolymer formulation and/or depending on the Quantum Dots incorporated into the prepolymer," states the patent application, which included a photo of a tiny gecko that was created with the prepolymer resin and a 3D printer.

TechLink's Austin Leach, a certified licensing professional, has been in contact with the lab and is excited to see the technology transition into the electronics marketplace.

"Functionalized quantum dots produce color properties that make displays brighter and more realistic," Leach said. "Just think about the millions of mobile phones, flat-screen TVs, and touch screen devices in the world -- this could also make them stronger and more energy efficient."

U.S. Naval Research Laboratory. Apr 12, 2019.



<< voltar para novidades

 © 2001-2020 LQES - lqes@iqm.unicamp.br sobre o lqes | políticas | link o lqes | divulgação | fale conosco