Laboratório de Química do Estado Sólido
 LQES NEWS  portfólio  em pauta | pontos de vista | vivência lqes | lqes cultural | lqes responde 
 o laboratório | projetos e pesquisa | bibliotecas lqes | publicações e teses | serviços técno-científicos | alunos e alumni 

LQES
lqes news
novidades de C&T&I e do LQES

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

LQES News anteriores

em foco

hot temas

 
NOVIDADES

On-surface synthesis of coronoids.

Coronoids are circular polycyclic aromatic hydrocarbons with a central cavity. Kekulene, a ring formed from benzene rings, is a simple example of this type of compound. Larger coronoids with more than one layer of benzene rings can also be considered to be porous nanographenes. These coronoids can be difficult to characterize due to their low solubility. On-surface synthesis can be used for the preparation of coronoids and, at the same time, allow their characterization using methods such as scanning tunneling microscopy (STM) or atomic force microscopy (AFM).



Kekulene.

Credit: ACS


Marco Di Giovannantonio, Carlo A. Pignedoli, Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Klaus Müllen, Max Planck Institute for Polymer Research, Mainz, and University of Mainz, both Germany, Akimitsu Narita, Max Planck Institute for Polymer Research and Okinawa Institute of Science and Technology Graduate University, Japan, and colleagues have used an on-surface synthesis approach to synthesize C168 and C140 coronoids, which the team calls [6]coronoid (pictured) and [5]coronoid, respectively. The researchers used 5,9-dibromo-14-phenylbenzo[m]tetraphene as a precursor. It was heated on an Au(111) surface to first perform a dehalogenative aryl–aryl coupling (at 200 °C) and then a cyclodehydrogenation (at 380 °C) to give the desired coronoids.

Under highly diluted conditions, the team obtained yields of 30 % and 6 % for [5]- and [6]coronoid, respectively. Various chainlike structures and some macrocycles were formed as side products. The structures of [6]coronoid and [5]coronoid were investigated using AFM. The team found that [6]coronoid is planar on the gold surface and the size of its inner cavity is 1.4 nm. [5]Coronoid is nonplanar, with two of its inner edges appearing to be raised in STM and AFM images. The size of its pore is 1.1 nm. According to the researchers, the coronoids might be useful building blocks for larger nanoporous graphenes.


Bibliography:
Large-Cavity Coronoids with Different Inner and Outer Edge Structures,Marco Di Giovannantonio, Xuelin Yao, Kristjan Eimre, José I. Urgel, Pascal Ruffieux, Carlo A. Pignedoli, Klaus Müllen, Roman Fasel, Akimitsu Narita,J. Am. Chem. Soc. 2020, https://pubs.acs.org/doi/10.1021/jacs.0c05268.

ChemistryView. Accessed: July 20, 2020.



<< voltar para novidades

 © 2001-2020 LQES - lqes@iqm.unicamp.br sobre o lqes | políticas | link o lqes | divulgação | fale conosco