Laboratório de Química do Estado Sólido
 LQES NEWS  portfólio  em pauta | pontos de vista | vivência lqes | lqes cultural | lqes responde 
 o laboratório | projetos e pesquisa | bibliotecas lqes | publicações e teses | serviços técno-científicos | alunos e alumni 

LQES
lqes news
novidades de C&T&I e do LQES

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

LQES News anteriores

em foco

hot temas

 
NOVIDADES

Borophene - the new prodigy in flatland.

Borophene is the name for atomically thin, two-dimensional (2D) sheets of boron. Whereas boron is a nonmetallic semiconductor in its bulk form, it becomes a metallic conductor in 2D, even at a thickness of only one atomic layer.

Borophene is structurally similar to graphene, with a hexagonal network made of boron (instead of carbon) atoms on each of the six vertices defining the hexagon. However, borophene is different in that it periodically has an extra boron atom in the center of the hexagon.

Since the 2004 discovery of graphene, scientists have been on the hunt for other 2D materials with remarkable properties. Numerous 2D materials have been synthesized or theoretically predicted, for example silicene and germanenephosphorene, transition metal dichalcogenides, arsenene and antimonene.



The number of publications per year on various 2D materials (graphene, phosphorene, boron nitride, transition metal dichalcogenides, germanene, silicone, and borophene) as of mid-2019.

Reprinted with permission by Wiley-VCH Verlag


Numerous experimental and theoretical studies of the mechanical properties, electronic structure, lattice thermal conductivity, superconducting properties, optical properties, atomic adsorption, and surface reactivity of borophene have shown its uniqueness.

A recent review of the state of borophene research (Advanced Materials"Borophene: New Sensation in Flatland") discusses various growth techniques and application areas for borophene and provides an in-depth summary of the material's electronic, optical, thermal, and elastic properties compared to its 2D cousins.

Among 2D materials, borophene has attracted considerable attention owing to its unique chemical structure and impressive electronic conductivity and surface properties. As the authors point out, "apart from the usual covalent bonding, boron can form a three-center two-electron bonding, which enables the formation of a considerable number of atomic clusters having various sizes and atomic bindings."

Graphene, the first discovered 2D material, is semimetallic, phosphorene is semiconducting, while borophene is metallic.



The family of 2D materials.

Reprinted with permission by Wiley-VCH Verlag


Freestanding borophene's unique properties make it suitable for a wide range of applications in sensing, catalysis, energy conversion (fuel cells and supercapacitors), and energy storage.

Another intriguing feature of borophene is its atomic configuration. Borophene has two planar atomic sheet configurations: one of them is perfectly flat, referred to as X3 phase, while β12 is an atomic sheet having atomic ridges.

Unlike graphene, which is structurally isotropic in nature, the β12 phase of borophene is anisotropic and that in turn is expected to exhibit higher carrier density and mechanical stiffness in preferred direction.



a–c) HRTEM of borophene sheet obtained through sonochemical route in acetone solvent having: a) β12, b) intermediate, and c) X3-like phase along with their FFT patterns, respectively.

Reprinted with permission by Wiley-VCH Verlag


In anisotropic materials, their mechanical or electronic properties – like their electrical conductivity – vary with different crystallographic orientations. In contrast, the properties of an isotropic material like graphene are the same in all directions.

The atomic ridges in β12 borophene provide higher electron densities along them. The spaces between the ridgelines can act as channels for ion transport in energy storage applications. The atomic binding of gaseous molecules on a borophene surface is expected to be better on the ridgeline as it can provide an enhanced anchoring.

Similarly, increased catalytic activities are expected. The unique properties and high potential for technological applications make borophene a promising material. However, further studies on its structural characteristics and properties are required before it can be commercialized.

Wrapping up their review, the authors conclude that borophene has progressed from conception to realization and is extensively studied for practical applications. It could be employed as a replacement for graphene in several applications such as terahertz applications and strengthening of plastics.

"As graphene has pushed the boundaries of science and engineering and changed the industries, borophene, lighter with abundant electrons, compared to graphene, would be a new cutting-edge material in the near future. The progress on borophene has been outstanding, but its high potentials are yet to be utilized. Borophene is a unique material with intriguing bonding capabilities and unprecedented physical and chemical behaviors for various instant and long-term applications."

By Michael Berger – Michael is author of three books by the Royal Society of Chemistry:
Nano-Society: Pushing the Boundaries of Technology,
Nanotechnology: The Future is Tiny, and
Nanoengineering: The Skills and Tools Making Technology Invisible


Assuntos Conexos:

Hot Temas  -  Materiais 2D.



<< voltar para novidades

 © 2001-2020 LQES - lqes@iqm.unicamp.br sobre o lqes | políticas | link o lqes | divulgação | fale conosco